Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis.
نویسندگان
چکیده
Aminoacyl-tRNA synthetases (aaRSs) are ancient and evolutionary conserved enzymes catalyzing the formation of aminoacyl-tRNAs, that are used as substrates for ribosomal protein biosynthesis. In addition to full length aaRS genes, genomes of many organisms are sprinkled with truncated genes encoding single-domain aaRS-like proteins, which often have relinquished their canonical role in genetic code translation. We have identified the genes for putative seryl-tRNA synthetase homologs widespread in bacterial genomes and characterized three of them biochemically and structurally. The proteins encoded are homologous to the catalytic domain of highly diverged, atypical seryl-tRNA synthetases (aSerRSs) found only in methanogenic archaea and are deprived of the tRNA-binding domain. Remarkably, in comparison to SerRSs, aSerRS homologs display different and relaxed amino acid specificity. aSerRS homologs lack canonical tRNA aminoacylating activity and instead transfer activated amino acid to phosphopantetheine prosthetic group of putative carrier proteins, whose genes were identified in the genomic surroundings of aSerRS homologs. Detailed kinetic analysis confirmed that aSerRS homologs aminoacylate these carrier proteins efficiently and specifically. Accordingly, aSerRS homologs were renamed amino acid:[carrier protein] ligases (AMP forming). The enzymatic activity of aSerRS homologs is reminiscent of adenylation domains in nonribosomal peptide synthesis, and thus they represent an intriguing link between programmable ribosomal protein biosynthesis and template-independent nonribosomal peptide synthesis.
منابع مشابه
Ribosomal synthesis of unnatural peptides.
Combinatorial libraries of non-biological polymers and drug-like peptides could in principle be synthesized from unnatural amino acids by exploiting the broad substrate specificity of the ribosome. The ribosomal synthesis of such libraries would allow rare functional molecules to be identified using technologies developed for the in vitro selection of peptides and proteins. Here, we use a recon...
متن کاملStructural basis for nonribosomal peptide synthesis by an aminoacyl-tRNA synthetase paralog.
Cyclodipeptides are secondary metabolites biosynthesized by many bacteria and exhibit a wide array of biological activities. Recently, a new class of small proteins, named cyclodipeptide synthases (CDPS), which are unrelated to the typical nonribosomal peptide synthetases, was shown to generate several cyclodipeptides, using aminoacyl-tRNAs as substrates. The Mycobacterium tuberculosis CDPS, Rv...
متن کاملCyclodipeptide synthases, a family of class-I aminoacyl-tRNA synthetase-like enzymes involved in non-ribosomal peptide synthesis
Cyclodipeptide synthases (CDPSs) belong to a newly defined family of enzymes that use aminoacyl-tRNAs (aa-tRNAs) as substrates to synthesize the two peptide bonds of various cyclodipeptides, which are the precursors of many natural products with noteworthy biological activities. Here, we describe the crystal structure of AlbC, a CDPS from Streptomyces noursei. The AlbC structure consists of a m...
متن کاملDNA-dependent in vitro synthesis of Escherichia coli ribosomal protein S20 and isoleucyl-tRNA synthetase. Effect of guanosine-5'-diphosphate-3'-diphosphate.
Recent analysis by means of a direct chemical assay has shown that the numbers of aminoacyl-tRNA synthetase molecules per bacterial cell vary with the growth rate [ 1,2] . This type of control (‘metabolic regulation’) is responsible for the fact that under different rates of unrestricted growth the ratio of aminoacyl-tRNA synthetases relative to other components of the protein synthesis apparat...
متن کاملSelectivity of the yersiniabactin synthetase adenylation domain in the two-step process of amino acid activation and transfer to a holo-carrier protein domain.
The adenylation (A) domain of the Yersinia pestis nonribosomal peptide synthetase that biosynthesizes the siderophore yersiniabactin (Ybt) activates three molecules of L-cysteine and covalently aminoacylates the phosphopantetheinyl (P-pant) thiols on three peptidyl carrier protein (PCP) domains embedded in the two synthetase subunits, two in cis (PCP1, PCP2) in subunit HMWP2 and one in trans (P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 33 شماره
صفحات -
تاریخ انتشار 2010